Search results for "Zinc finger"

showing 10 items of 57 documents

Tristetraprolin Regulates the Expression of the Human Inducible Nitric-Oxide Synthase Gene

2005

The expression of human inducible NO synthase (iNOS) is regulated both by transcriptional and post-transcriptional mechanisms. Stabilization of mRNAs often depends on activation of p38 mitogen-activated protein kinase (p38 MAPK). In human DLD-1 cells, inhibition of p38 MAPK by the compound 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580) or by overexpression of a dominant-negative p38 MAPKalpha protein resulted in a reduction of human iNOS mRNA and protein expression, whereas human iNOS promoter activity was not affected. An important RNA binding protein regulated by the p38 MAPK pathway and involved in the regulation of the stability of several mRNAs is tr…

ImmunoprecipitationRNA Stabilityp38 mitogen-activated protein kinasesTristetraprolinNitric Oxide Synthase Type IIRNA-binding proteinGene Expression Regulation EnzymologicCell LineImmediate-Early ProteinsTristetraprolinEnzyme StabilityHumansRNA MessengerProtein kinase APharmacologyRegulation of gene expressionbiologyChemistryZinc FingersTransfectionMolecular biologyDNA-Binding ProteinsNitric oxide synthasebiology.proteinMolecular MedicineNitric Oxide SynthaseMolecular Pharmacology
researchProduct

Age-dependent epileptic encephalopathy associated with an unusual co-occurrence of ZEB2 and SCN1A variants.

2020

Mowat-Wilson syndrome is a genetic disorder associated with a variable phenotype including peculiar facial features associated with intellectual disability, epilepsy, language impairment, and multiple congenital anomalies caused by heterozygous mutation of the ZEB2 gene. The ZEB2 protein is a complex transcription factor that encompasses multiple functional domains that interact with the regulatory regions of target genes including those involved in brain development. Recently, it has been documented that ZEB2 regulates the differentiation of interneuron progenitors migrating from the medial ganglionic eminence to cortical layers by repression of the Nkx2-1 homeobox transcription factor. It…

ZEB2genotype-phenotype correlationSettore MED/38 - Pediatria Generale E SpecialisticaSettore M-PSI/08 - Psicologia ClinicaIntellectual DisabilityHumansMowat-Wilson syndromeEEGgenotype-phenotype correlationSCN1AHirschsprung DiseaseEEGChildGenetic Association StudiesZEB2Zinc Finger E-box Binding Homeobox 2EpilepsyEEG; epilepsy; GABAergic interneurons; genotype-phenotype correlation; Mowat-Wilson syndrome; SCN1A; ZEB2FaciesElectroencephalographySettore MED/39 - Neuropsichiatria InfantileGABAergic interneuronsMowat-Wilson syndromeepilepsyNAV1.1 Voltage-Gated Sodium ChannelGABAergic interneuronsMicrocephalySettore MED/26 - NeurologiaFemaleEpileptic disorders : international epilepsy journal with videotape
researchProduct

Cyclometalated Au(III) Complexes for Cysteine Arylation in Zinc Finger Protein Domains: Towards Controlled Reductive Elimination

2019

With the aim of exploiting the use of organometallic species for the efficient modification of proteins through C-atom transfer, the gold-mediated cysteine arylation through a reductive elimination process occurring from the reaction of cyclometalated AuIII C^N complexes with a zinc finger peptide (Cys2His2 type) is here reported. Among the four selected AuIII cyclometalated compounds, the [Au(CCON)Cl2] complex featuring the 2-benzoylpyridine (CCON) scaffold was identified as the most prone to reductive elimination and Cys arylation in buffered aqueous solution (pH 7.4) at 37 °C by high-resolution LC electrospray ionization mass spectrometry. DFT and quantum mechanics/molecular mechanics (Q…

Models Molecularzinc finger proteinProtein DomainPeptidecatalysi010402 general chemistry01 natural sciencesCatalysisReductive eliminationCatalysisThermodynamicOrganogold Compounds[CHIM]Chemical SciencesReactivity (chemistry)CysteineZinc fingerchemistry.chemical_classificationAqueous solutionCoordination Complexe010405 organic chemistryOrganic Chemistryreductive eliminationZinc FingersGeneral ChemistryCombinatorial chemistry0104 chemical sciencescysteine arylationchemistrySettore CHIM/03 - Chimica Generale E Inorganicagold complexeQuantum TheoryGoldCysteine
researchProduct

EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance.

2016

Diffuse invasion of the surrounding brain parenchyma is a major obstacle in the treatment of gliomas with various therapeutics, including anti-angiogenic agents. Here we identify the epi-/genetic and microenvironmental downregulation of ephrinB2 as a crucial step that promotes tumour invasion by abrogation of repulsive signals. We demonstrate that ephrinB2 is downregulated in human gliomas as a consequence of promoter hypermethylation and gene deletion. Consistently, genetic deletion of ephrinB2 in a murine high-grade glioma model increases invasion. Importantly, ephrinB2 gene silencing is complemented by a hypoxia-induced transcriptional repression. Mechanistically, hypoxia-inducible facto…

0301 basic medicineCell signalingScienceGeneral Physics and AstronomyRepressorDown-RegulationAngiogenesis InhibitorsEphrin-B2BiologyGeneral Biochemistry Genetics and Molecular BiologyArticleNeovascularization03 medical and health sciencesDownregulation and upregulationddc:570GliomamedicineGene silencingAnimalsHumansNeoplasm InvasivenessPsychological repressionZinc Finger E-box Binding Homeobox 2Regulation of gene expressionMice KnockoutMultidisciplinaryNeovascularization PathologicQGeneral ChemistryGliomamedicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitXenograft Model Antitumor AssaysCell HypoxiaCell biologyUp-RegulationBevacizumabGene Expression Regulation NeoplasticMice Inbred C57BL030104 developmental biologyDrug Resistance Neoplasmmedicine.symptomNature communications
researchProduct

Cyclic AMP-induced Chromatin Changes Support the NFATc-mediated Recruitment of GATA-3 to the Interleukin 5 Promoter

2008

Elevated intracellular cyclic AMP levels, which suppress the proliferation of naive T cells and type 1 T helper (Th1) cells are a property of T helper 2 (Th2) cells and regulatory T cells. While cyclic AMP signals interfere with the IL-2 promoter induction, they support the induction of Th2-type genes, in particular of il-5 gene. We show here that cyclic AMP signals support the generation of three inducible DNase I hypersensitive chromatin sites over the il-5 locus, including its promoter region. In addition, cyclic AMP signals enhance histone H3 acetylation at the IL-5 promoter and the concerted binding of GATA-3 and NFATc to the promoter. This is facilitated by direct protein-protein inte…

Quantitative Trait LociGATA3 Transcription FactorBiologyBiochemistryCell LineHistonesMiceTh2 CellsCyclic AMPTranscriptional regulationAnimalsHumansTranscription Chromatin and EpigeneticsPromoter Regions GeneticHistone H3 acetylationMolecular BiologyInterleukin 5Cell ProliferationMice Inbred BALB CNFATC Transcription FactorsEffectorLymphokineAcetylationZinc FingersPromoterCell BiologyDNA-binding domainTh1 CellsChromatin Assembly and DisassemblyMolecular biologyChromatinProtein Structure TertiaryChromatinGene Expression RegulationInterleukin-2Interleukin-5Signal TransductionJournal of Biological Chemistry
researchProduct

Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome

2015

Mowat-Wilson syndrome (MWS) is a rare genetic syndrome characterized by a specific facial gestalt, intellectual deficiency, Hirschsprung disease and multiple congenital anomalies. Heterozygous mutations or deletions in the zinc finger E-box-binding homeobox2 gene (ZEB2) cause MWS. ZEB2 encodes for Smad-interacting protein 1, a transcriptional co-repressor involved in TGF-beta and BMP pathways and is strongly expressed in early stages of development in mice. Eye abnormalities have rarely been described in patients with this syndrome. Herein, we describe four patients (two males and two females; mean age 7 years) with MWS and eye malformations. Ocular anomalies included, iris/retinal coloboma…

Malemedicine.medical_specialtyAdolescentgenetic structuresMowat–Wilson syndromeRetinal Pigment EpitheliumBiologyEyeCataractchemistry.chemical_compoundAtrophyIntellectual DisabilityOphthalmologyGeneticsmedicineHumansHirschsprung Disease[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory OrgansIris (anatomy)HyphemaGenetics (clinical)Zinc Finger E-box Binding Homeobox 2Homeodomain ProteinsRetinaFaciesOptic NerveRetinalAnatomymedicine.diseaseeye diseasesColobomaRepressor Proteinsmedicine.anatomical_structurechemistryChild PreschoolLens (anatomy)MutationMicrocephalyOptic nerveFemalesense organsAtrophy[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyAmerican Journal of Medical Genetics Part A
researchProduct

The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity.

2007

Epithelial to mesenchymal transition (EMT) is implicated in the progression of primary tumours towards metastasis and is likely caused by a pathological activation of transcription factors regulating EMT in embryonic development. To analyse EMT-causing pathways in tumouri-genesis, we identified transcriptional targets of the E-cadherin repressor ZEB1 in invasive human cancer cells. We show that ZEB1 repressed multiple key determinants of epithelial differentiation and cell–cell adhesion, including the cell polarity genes Crumbs3, HUGL2 and Pals1-associated tight junction protein. ZEB1 associated with their endogenous promoters in vivo, and strongly repressed promotor activities in reporter …

AdultCancer ResearchChromatin ImmunoprecipitationCellular differentiationImmunoblottingDown-RegulationBreast NeoplasmsBiologymedicine.disease_causeEpitheliumArticleCell polarityGeneticsmedicineTumor Cells CulturedHumansNeoplasm InvasivenessEpithelial–mesenchymal transitionCell adhesionPromoter Regions GeneticMolecular BiologyTranscription factorEpithelial polarityAgedOligonucleotide Array Sequence AnalysisHomeodomain ProteinsMembrane GlycoproteinsReverse Transcriptase Polymerase Chain ReactionGene Expression ProfilingCell PolarityMembrane ProteinsZinc Finger E-box-Binding Homeobox 1Cell DifferentiationMiddle AgedCadherinsCytoskeletal ProteinsMicroscopy FluorescenceCancer cellColonic NeoplasmsCancer researchDisease ProgressionSnail Family Transcription FactorsCarcinogenesisNucleoside-Phosphate KinaseTranscription FactorsOncogene
researchProduct

Does Arsenic Contamination Affect DNA Methylation Patterns in a Wild Bird Population? : An Experimental Approach

2021

Pollutants, such as toxic metals, negatively influence organismal health and performance, even leading to population collapses. Studies in model organisms have shown that epigenetic marks, such as DNA methylation, can be modulated by various environmental factors, including pollutants, influencing gene expression, and various organismal traits. Yet experimental data on the effects of pollution on DNA methylation from wild animal populations are largely lacking. We here experimentally investigated for the first time the effects of early-life exposure to environmentally relevant levels of a key pollutant, arsenic (As), on genome-wide DNA methylation in a wild bird population. We experimentall…

environmental epigeneticsPopulationAnimals Wild010501 environmental sciencesBiology01 natural sciencesArticleArsenicecotoxicologyarseeniBirdsParus majorGene expressionEnvironmental ChemistryAnimalspollutionhaitalliset aineetEpigeneticseducationGene0105 earth and related environmental sciencesZinc fingerGeneticseducation.field_of_studyPlan_S-Compliant-TAympäristön saastuminenGeneral ChemistrytalitiainenDNA Methylation3. Good healthDNA-metylaatioArsenic contamination of groundwaterekotoksikologiaCpG site13. Climate actionepigenetiikkavillieläimetinternationalDNA methylationecological epigeneticsEnvironmental Pollutants
researchProduct

Formation of novel PRDM9 allele by indel events as possible trigger for tarsier-anthropoid split

2016

AbstractPRDM9is currently the sole speciation gene found in vertebrates causing hybrid sterility probably due to incompatible alleles. Its role in defining the double strand break loci during the meiotic prophase I is crucial for proper chromosome segregation. Therefore, the rapid turnover of the loci determining zinc finger array seems to be causative for incompatibilities. We here investigated the zinc finger domain-containing exon ofPRDM9in 23 tarsiers. Tarsiers, the most basal extant haplorhine primates, exhibit two frameshifting indels at the 5’-end of the array. The first mutation event interrupts the reading frame and function while the second compensates both. The fixation of this p…

GeneticsZinc fingerFixation (population genetics)Genetic driftbiologyAlleleIndelbiology.organism_classificationTarsierPRDM9Tarsius
researchProduct

The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing.

2006

Alternative splicing is widely used to generate protein diversity and to control gene expression in many biological processes, including cell fate determination and apoptosis. In this review, we focus on the Muscleblind family of tissue-specific alternative splicing regulators. Muscleblind proteins bind pre-mRNA through an evolutionarily conserved tandem CCCH zinc finger domain. Human Muscleblind homologs MBNL1, MBNL2 and MBNL3 promote inclusion or exclusion of specific exons on different pre-mRNAs by antagonizing the activity of CUG-BP and ETR-3-like factors (CELF proteins) bound to distinct intronic sites. The relative activities of Muscleblind and CELF proteins control a key developmenta…

Cancer ResearchCellular differentiationMolecular Sequence DataRNA-binding proteinCell fate determinationBiologychemistry.chemical_compoundExonMiceMBNL1AnimalsHumansMyotonic DystrophyAmino Acid SequenceMolecular BiologyGeneticsZinc fingerAlternative splicingGene Expression Regulation DevelopmentalRNA-Binding ProteinsCell DifferentiationZinc FingersCell BiologyAlternative SplicingchemistryRNA splicingDevelopmental BiologyDifferentiation; research in biological diversity
researchProduct